Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 72(4): 627-635, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31760070

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. METHODS: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. RESULTS: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in ß-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. CONCLUSION: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. LAY SUMMARY: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Acrilamidas/farmacologia , Idoso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Necroptose/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/sangue , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...